配置文件介绍
settings
配置文件介绍
FastGPT 配置参数介绍
由于环境变量不利于配置复杂的内容,新版 FastGPT 采用了 ConfigMap 的形式挂载配置文件,你可以在 projects/app/data/config.json
看到默认的配置文件。可以参考 docker-compose 快速部署 来挂载配置文件。
开发环境下,你需要将示例配置文件 config.json
复制成 config.local.json
文件才会生效。
下面配置文件示例中包含了系统参数和各个模型配置:
4.6.8+ 版本新配置文件示例
{
"feConfigs": {
"lafEnv": "https://laf.dev" // laf环境。 https://laf.run (杭州阿里云) ,或者私有化的laf环境。如果使用 Laf openapi 功能,需要最新版的 laf 。
},
"systemEnv": {
"vectorMaxProcess": 15, // 向量处理线程数量
"qaMaxProcess": 15, // 问答拆分线程数量
"tokenWorkers": 50, // Token 计算线程保持数,会持续占用内存,不能设置太大。
"pgHNSWEfSearch": 100 // 向量搜索参数。越大,搜索越精确,但是速度越慢。设置为100,有99%+精度。
},
"llmModels": [
{
"provider": "OpenAI", // 模型提供商,主要用于分类展示,目前已经内置提供商包括:https://github.com/labring/FastGPT/blob/main/packages/global/core/ai/provider.ts, 可 pr 提供新的提供商,或直接填写 Other
"model": "gpt-4o-mini", // 模型名(对应OneAPI中渠道的模型名)
"name": "gpt-4o-mini", // 模型别名
"maxContext": 125000, // 最大上下文
"maxResponse": 16000, // 最大回复
"quoteMaxToken": 120000, // 最大引用内容
"maxTemperature": 1.2, // 最大温度
"charsPointsPrice": 0, // n积分/1k token(商业版)
"censor": false, // 是否开启敏感校验(商业版)
"vision": true, // 是否支持图片输入
"datasetProcess": true, // 是否设置为文本理解模型(QA),务必保证至少有一个为true,否则知识库会报错
"usedInClassify": true, // 是否用于问题分类(务必保证至少有一个为true)
"usedInExtractFields": true, // 是否用于内容提取(务必保证至少有一个为true)
"usedInToolCall": true, // 是否用于工具调用(务必保证至少有一个为true)
"usedInQueryExtension": true, // 是否用于问题优化(务必保证至少有一个为true)
"toolChoice": true, // 是否支持工具选择(分类,内容提取,工具调用会用到。)
"functionCall": false, // 是否支持函数调用(分类,内容提取,工具调用会用到。会优先使用 toolChoice,如果为false,则使用 functionCall,如果仍为 false,则使用提示词模式)
"customCQPrompt": "", // 自定义文本分类提示词(不支持工具和函数调用的模型
"customExtractPrompt": "", // 自定义内容提取提示词
"defaultSystemChatPrompt": "", // 对话默认携带的系统提示词
"defaultConfig": {}, // 请求API时,挟带一些默认配置(比如 GLM4 的 top_p)
"fieldMap": {} // 字段映射(o1 模型需要把 max_tokens 映射为 max_completion_tokens)
},
{
"provider": "OpenAI",
"model": "gpt-4o",
"name": "gpt-4o",
"maxContext": 125000,
"maxResponse": 4000,
"quoteMaxToken": 120000,
"maxTemperature": 1.2,
"charsPointsPrice": 0,
"censor": false,
"vision": true,
"datasetProcess": true,
"usedInClassify": true,
"usedInExtractFields": true,
"usedInToolCall": true,
"usedInQueryExtension": true,
"toolChoice": true,
"functionCall": false,
"customCQPrompt": "",
"customExtractPrompt": "",
"defaultSystemChatPrompt": "",
"defaultConfig": {},
"fieldMap": {}
},
{
"provider": "OpenAI",
"model": "o1-mini",
"name": "o1-mini",
"maxContext": 125000,
"maxResponse": 65000,
"quoteMaxToken": 120000,
"maxTemperature": 1.2,
"charsPointsPrice": 0,
"censor": false,
"vision": false,
"datasetProcess": true,
"usedInClassify": true,
"usedInExtractFields": true,
"usedInToolCall": true,
"usedInQueryExtension": true,
"toolChoice": false,
"functionCall": false,
"customCQPrompt": "",
"customExtractPrompt": "",
"defaultSystemChatPrompt": "",
"defaultConfig": {
"temperature": 1,
"max_tokens": null,
"stream": false
}
},
{
"provider": "OpenAI",
"model": "o1-preview",
"name": "o1-preview",
"maxContext": 125000,
"maxResponse": 32000,
"quoteMaxToken": 120000,
"maxTemperature": 1.2,
"charsPointsPrice": 0,
"censor": false,
"vision": false,
"datasetProcess": true,
"usedInClassify": true,
"usedInExtractFields": true,
"usedInToolCall": true,
"usedInQueryExtension": true,
"toolChoice": false,
"functionCall": false,
"customCQPrompt": "",
"customExtractPrompt": "",
"defaultSystemChatPrompt": "",
"defaultConfig": {
"temperature": 1,
"max_tokens": null,
"stream": false
}
}
],
"vectorModels": [
{
"provider": "OpenAI",
"model": "text-embedding-3-small",
"name": "text-embedding-3-small",
"charsPointsPrice": 0,
"defaultToken": 512,
"maxToken": 3000,
"weight": 100
},
{
"provider": "OpenAI",
"model": "text-embedding-3-large",
"name": "text-embedding-3-large",
"charsPointsPrice": 0,
"defaultToken": 512,
"maxToken": 3000,
"weight": 100,
"defaultConfig": {
"dimensions": 1024
}
},
{
"provider": "OpenAI",
"model": "text-embedding-ada-002", // 模型名(与OneAPI对应)
"name": "Embedding-2", // 模型展示名
"charsPointsPrice": 0, // n积分/1k token
"defaultToken": 700, // 默认文本分割时候的 token
"maxToken": 3000, // 最大 token
"weight": 100, // 优先训练权重
"defaultConfig": {}, // 自定义额外参数。例如,如果希望使用 embedding3-large 的话,可以传入 dimensions:1024,来返回1024维度的向量。(目前必须小于1536维度)
"dbConfig": {}, // 存储时的额外参数(非对称向量模型时候需要用到)
"queryConfig": {} // 参训时的额外参数
}
],
"reRankModels": [],
"audioSpeechModels": [
{
"provider": "OpenAI",
"model": "tts-1",
"name": "OpenAI TTS1",
"charsPointsPrice": 0,
"voices": [
{ "label": "Alloy", "value": "alloy", "bufferId": "openai-Alloy" },
{ "label": "Echo", "value": "echo", "bufferId": "openai-Echo" },
{ "label": "Fable", "value": "fable", "bufferId": "openai-Fable" },
{ "label": "Onyx", "value": "onyx", "bufferId": "openai-Onyx" },
{ "label": "Nova", "value": "nova", "bufferId": "openai-Nova" },
{ "label": "Shimmer", "value": "shimmer", "bufferId": "openai-Shimmer" }
]
}
],
"whisperModel": {
"provider": "OpenAI",
"model": "whisper-1",
"name": "Whisper1",
"charsPointsPrice": 0
}
}
内置的模型提供商ID
为了方便模型分类展示,FastGPT 内置了部分模型提供商的名字和 Logo。如果你期望补充提供商,可提交 Issue,并提供几个信息:
- 厂商官网地址
- 厂商 SVG logo,建议是正方形图片。
目前已支持的提供商, 复制 “-” 之前的字符串,作为 provider 的值。
- OpenAI
- Claude
- Gemini
- Meta
- MistralAI
- AliCloud - 阿里云
- Qwen - 通义千问
- Doubao - 豆包
- ChatGLM - 智谱
- DeepSeek - 深度求索
- Moonshot - 月之暗面
- MiniMax
- SparkDesk - 讯飞星火
- Hunyuan - 腾讯混元
- Baichuan - 百川
- Yi - 零一万物
- Ernie - 文心一言
- StepFun - 阶跃星辰
- Ollama
- BAAI - 智源研究院
- FishAudio
- Other - 其他
ReRank 模型接入
由于 OneAPI 不支持 Rerank 模型,所以需要单独配置接入,这里
使用硅基流动的在线模型
有免费的 bge-reranker-v2-m3
模型可以使用。
- 点击注册硅基流动账号
- 进入控制台,获取 API key: https://cloud.siliconflow.cn/account/ak
- 修改 FastGPT 配置文件
{
"reRankModels": [
{
"model": "BAAI/bge-reranker-v2-m3", // 这里的model需要对应 siliconflow 的模型名
"name": "BAAI/bge-reranker-v2-m3",
"requestUrl": "https://api.siliconflow.cn/v1/rerank",
"requestAuth": "siliconflow 上申请的 key"
}
]
}
私有部署模型
请使用 4.6.6-alpha 以上版本,配置文件中的 reRankModels
为重排模型,虽然是数组,不过目前仅有第1个生效。
- 部署 ReRank 模型
- 找到 FastGPT 的配置文件中的
reRankModels
, 4.6.6 以前是ReRankModels
。 - 修改对应的值:
{
"reRankModels": [
{
"model": "bge-reranker-base", // 随意
"name": "检索重排-base", // 随意
"charsPointsPrice": 0,
"requestUrl": "{{host}}/v1/rerank",
"requestAuth": "安全凭证,已自动补 Bearer"
}
]
}